Call us toll free:
Artificial Intelligence in Agriculture

27 Crops Harvest area and Production

by Jerry Comments: 0

DATASET OVERVIEW
27Crops harvest area and production,crops data from national statistical departments.
Crops:27
Time coverage:2000-2020
Spatial coverage:Global(geo level1/level2)
Country production statistics: Country statistics department
Format:.csv
————————————————————————————
DATE OF DATASET
Creation : 2023-01-17
————————————————————————————
DATASET CREATOR
Name:Zishuo Zhao
E_mail:zhaozishuo6392@outlook.com
————————————————————————————
COLUMN DESCRIPTIONS
crop_id:FAO crop_id
crop:27 crops
year:yyyy
area_code_fao:Unique numeric ID for level 0 (fao/country iso3)
area_country:country_name
zone:Multi-provincial regions
state_code:FAO State/province/equivalent (level 1)
state:state/province name
region_code:Unique numeric ID for level 2,County/district/equivalent (level 2)
region:district/county name
sown_area:thsd.ha
harvest_area:thsd.ha
production:thsd.tn
————————————————————————————

crops Argentina Australia Brazil Poland Germany Canada China Russia India Myanmar Mexico Ukraine Thailand Viet Nam Indonesia kazakhstan
wheat
rice
maize
soybean
barly
Buckwheat
cassava
chickpeas
cocoa
coffee
cotton
flaxseed
lentils
millet
mungbean
oats
palmoil
pea
peanut
rapeseed
rye
sorghum
rubber
sugarbeet
sugarcane
sunflowerseed
triticale

————————————————————————————

Country State/level 1 District/level 2 Time Coverage
Argentina 1990-2020
Australia 2011/2014-2019
Brazil 1999-2021
Poland 1999-2020
Germany 2010-2020
Canada 1991-2021
China 1995-2019
Russia 2016-2020
India 2010-2018
Myanmar 2012-2019
Mexico 2012 2014 2017 2019
Ukraine 2010-2020
Thailand 2020
Viet Nam 1995-2020
Indonesia 1998-2015
kazakhstan 2016-2020

 

 

M3Crops (0.1 degree grid)

by Jerry Comments: 0

DATASET OVERVIEW
将数据从M3Crops转移到0.1degreeg grid cells,为进行全球农业和天气分析出作物空间分配基本模式。原数据是cell5m数据,转移到0.1度后,原数据Harvested Area: hectares 不再准确,只有Yield : tons per hectare不变,使用时需要验证数据准确度。

Harvested Area and Yields of 15 crops (M3-Crops Data)
Barley/Cotton/Maize/Oats/Oilpalm/Rapeseed/Rice/Rubber/Rye/Sorghum/Soy/Sugarbeet/Ugarcane/Sunflower/Wheat
Grid:0.1 degree
Format:.csv
————————————————————————————
DATE OF DATASET
Creation : 2023-01-20
————————————————————————————
COLUMN DESCRIPTIONS
gid_0:Unique numeric ID for level 0 (country iso3),Administrative boundaries (level 3)
name_0:country_name
point_id:.shp file export 0.1degree fishnet point id
lat:latitude
lon:longitude

Harvested Area: hectares: Crop-specific data representing the average number of hectares harvested per land-area of a gridcell during the 1997-2003 era
Yield : tons per hectare: Crop-specific data representing the average yield for a crop in tons per hectare during the 1997-2003 era
————————————————————————————

Country barley cotton maize oats oilpalm rapeseed rice rubber rye sorghum soybean sugarbeet sugarcane sunflower wheat
Argentina
Australia
Bangladesh
Bolivia
Brazil
Canada
China
Columbia
Egypt
Ethiopia
European
India
Indonesia
Iran
kazakhstan
Malaysia
Mexico
Myanmar
Nigeria
Pakistan
Paraguay
Philippine
Russia
SouthAfrica
Sudan
Thailand
Turkey
Ukraine
USA
Uzbekistan
Viet Nam

————————————————————————————
DATA SOURCE DECLARATION
The following data sources were used to create this dataset. If there is any inconsistency with the SOURCE DATA POLICY, please contact us for modification.

Harvested Area and Yields of 175 crops (M3-Crops Data)
GADM 3.6 – Administrative boundaries (level 1,level 2)

GDHY (0.1 degree grid)

by Jerry Comments: 0

DATASET OVERVIEW
Transfer data from GDHY to 0.1degree grid.The GDHY offers spatially explicit global analyses on crop yields and is especially useful for addressing recent patterns in crop yields and the impacts of recent climate variability and change on global food production; additionally, the GDHY can be used to evaluate global gridded crop model simulations and provide a basis for global and seasonal crop forecasting systems.
————————————————————————————
GDHY Author: Toshichika Iizumi
GDHY Publish Year: 2019
Country yield statistics:FAOSTAT
Spatial resolution:0.5°
Time coverage:1981–2016
Satellite products:Hybrid of dataset versions 1.2 and 1.3
Harvested area:M3-Crops (0.083° and average around 2000)
Crop calendar:SAGE [0.5°and average around 2000]
————————————————————————————
Factor Type(s):year of crop yield data collection
Period:1981–2016
Grid:0.1°
Format:.csv
Crops:Maize (major/second), soybean, rice (major/second), wheat (winter/spring)
————————————————————————————
COLUMN DESCRIPTIONS
year:yield (tonnes per hectare,1981–2016)
lat:latitude
lon:longitude
————————————————————————————

Country wheat wheat spring rice maize soybean
Argentina
Australia
Bangladesh
Bolivia
Brazil
Canada
China
Egypt
Ethiopia
European
India
Indonesia
Iran
kazakhstan
Malaysia
Mexico
Myanmar
Nigeria
Pakistan
Paraguay
Philippine
Russia
SouthAfrica
Thailand
Turkey
Ukraine
USA
Uzbekistan
Viet Nam

————————————————————————————
DATA SOURCE DECLARATION
The following data sources were used to create this dataset. If there is any inconsistency with the SOURCE DATA POLICY, please contact us for modification.

The global dataset of historical yields for major crops 1981–2016 (GDHY)

SPAM 2010 V2r0 (0.1 degree grid)

by Jerry Comments: 0

DATASET OVERVIEW
将数据从SPAM转移到0.1 degreeg grid cells,为进行全球农业和天气分析出作物空间分配基本模式。原数据是cell5m数据(ha,ton,kg/ha),转移到0.1度后,原数据harv_area/phys_area/prod 不再准确,只有yield不变,使用时需要验证数据准确度。

SPAM:Using a variety of inputs, IFPRI’s Spatial Production Allocation Model (SPAM) uses a cross-entropy approach to make plausible estimates of crop distribution within disaggregated units.

Grid:0.1 degree
Format:.csv
————————————————————————————
DATE OF DATASET
creation : 2022-07-11
————————————————————————————
COLUMN DESCRIPTIONS
gid_0:Unique numeric ID for level 0 (country iso3),Administrative boundaries (level 3)
name_0:country_name
point_id:.shp file export 0.1degree fishnet point id
lat:latitude
lon:longitude

————————————————————————————

Country barley cotton maize oilpalm rapeseed rice sorghum soybean wheat sugarbeet sugarcane sunflower
Argentina
Australia
Bangladesh
Bolivia
Brazil
Canada
China
Columbia
Egypt
Ethiopia
European
India
Indonesia
Iran
kazakhstan
Malaysia
Mexico
Myanmar
Nigeria
Pakistan
Paraguay
Philippine
Russia
Sudan
SouthAfrica
Thailand
Turkey
Ukraine
USA
Uzbekistan
Viet Nam

————————————————————————————
v: Variables
******************
*_A_* physical area
*_H_* harvested area
*_P_* production
*_Y_* yield kg/ha

t: Technologies
******************
*_TA all technologies together, ie complete crop
*_TI irrigated portion of crop
*_TH rainfed high inputs portion of crop
*_TL rainfed low inputs portion of crop
*_TS rainfed subsistence portion of crop
*_TR rainfed portion of crop (= TA – TI, or TH + TL + TS)

Food crops:
******************
crop # name SPAM name
1 wheat whea
2 rice rice
3 maize maiz
4 barley barl
7 sorghum sorg
20 soybean soyb

Non-food crops:
*******************
crop # name SPAM name
23 oilpalm oilp
24 sunflower sunf
25 rapeseed rape
28 sugarcane sugc
29 sugarbeet sugb
30 cotton cott

————————————————————————————

DATA SOURCE DECLARATION
The following data sources were used to create this dataset. If there is any inconsistency with the SOURCE DATA POLICY, please contact us for modification.

Spatial Production Allocation Model (SPAM) For 2010
GADM 3.6 – Administrative boundaries (level 1,level 2)

Global administrative type and land types of 0.1 degree grid in major countries

by Jerry Comments: 0

DATASET OVERVIEW
为进行全球农业和天气分析做出基准数据集,包括主要国家0.1 degree grid所在的行政区划,经纬度和土地类型,网站其他所有依据经纬度网点整理的数据和分析都以此网点数据为依据。网点数据主要覆盖有作物的土地。
Grid:0.1 degree
Format:.csv .shp
————————————————————————————
DATE OF DATASET
creation : 2022-07-05
————————————————————————————
DATASET CREATOR
Name:Zishuo Zhao
E_mail: zhaozishuo6392@outlook.com
————————————————————————————
COLUMN DESCRIPTIONS
fid:self -increasing ID
point_id:.shp file export 0.1degree grid point id
lat:latitude
lon:longitude
gid_0:Unique numeric ID for level 0 (country iso3),Administrative boundaries (level 3)
name_0:country_name
gid_1:Unique numeric ID for level 1,State/province/equivalent (level 1)
name_1:state/province name
nl_name_1:Non-Latin name. Official name in a non-latin script (e.g. Arabic, Chinese, Russian, Korean)
gid_2:Unique numeric ID for level 2,County/district/equivalent (level 2)
name_2:district/county name
nl_name_2:Non-Latin name. Official name in a non-latin script (e.g. Arabic, Chinese, Russian, Korean)
varname_i:Alternate names in usage for the place
type_i:Administrative type
engtpye_2:Administrative type in English
CC_i:Country code. Uniqe ID used within the country
hasc_i:A unique ID from Statoids(Global Nation and State Level Data)
land_type:GFSAD1KCM v001
0 Ocean Ocean or Water areas
1 Croplands, Irrigation Irrigation Major
2 Croplands, Irrigation Irrigation Minor
3 Croplands, Rainfed Rainfed
4 Croplands, Rainfed Rainfed, Minor Fragments
5 Croplands, Rainfed Rainfed, Very Minor Fragments
9 Non-Cropland Non-Cropland areas
————————————————————————————
DATA SOURCE DECLARATION
The following data sources were used to create this dataset. If there is any inconsistency with the SOURCE DATA POLICY, please contact us for modification.

Natural Earth shapefile (*.shp) of all countries of the world
GADM 3.6 – Administrative boundaries (level 1,level 2)
GFSAD1KCM v001:Global Food Security Support Analysis Data (GFSAD) Crop Mask 2010